AD-A148 872 THE DESCRIPTION OF LARGE SYSTEMS(U) MASSACHUSETTS INST 11
OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB K PITMAN
SEP 84 AI-M-801 N0BO14-88-C-8505

UNCLRSSIFIED F/G 9/2

Faxea

1.
’.

bre

2

L3 it

‘4

B -
PR ID SR v]

ry

o

W

?

——

—————

—

——

———
-
L

E

N
LX)

EEEE

[

()
g
(=]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AR > LV ¢
ARILENRRI S A

AR IO s
N L TN

o Yo RN Yk 2 W

KA ALY

5
-
\

Pl R TR TR AR

g

AD-A148 072

OTIE FILE COPY

A

v 3 R Pu B e e N d 'y < L u L b el S A S
1

|

UNCLASSIFIED ‘

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered) 1
READ INSTRUCTIONS
T NE’O_'i? NUMBER 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

AIM 801
¢ TITL Subtitte)) $. TYPE OF REPORT & PERIOD COVERED

THE DESCRIPTION OF LARGE SYSTEMS

6. PERFORMING ORG. AREPORT NUMBER

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

T RGTHOR(S) T CONTRACT OR GRANT NUNBERTS)]
N00014-80-C-0505
KENT PITMAN MCS-7912179
9. PERFORMING ORGANIZATION NAME AND ADDRiSS g P—ROORAI CLEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADORESS
Advanced Research Projects Agency
1400 Wilson Blivd

Arlington, Virginia 22209

12. REPORT DATE

13. NUMBER OF PAGES

. MONITORING AGENCY NAME & ADODRESS(!f ditferent fram Controlling Oftice)
Office of Naval Research

information Systems

Arlington, Virginia 22217

18. SECURITY CLASS. (of thte repen,

UNCLASSIFIED

] | FICAT 7OOWNGRA
a, ‘Dg.ft&"tll CATION/DOWNGRADING

ettt s —
16. DISTRIBUTION STATEMENT (of thie Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Bleck 20, il ditferent frem Repert)

18. SUPPLEMENTARY NOTES

None

ELECTE
NOV 2 8 1984

separable from their functionality.

In programming languages, standard __—]

19. KEY WORDS (Continue on reverse side if necessary and identily by bleck number)
Compilation
Large Systems E
Lisp ’
System Maintehance .

20. ABSTRACT (Ceontinue on reveree eide If necessary and identify by bleck number)

Fﬁl“ this paper, we discuss the problems associated with the description and
manipulation of large systems when their sources are not maintained as single
files. We show why and how tools that address these issues, such as Unix MAKE
and Lisp Machine DEFSYSTEM, have evolved.

Existing formalisms suffer from the problem that their syntax is not easily &

P A AT S Y NI 4 T

FOonM
JAN 73

0D , 1473

EDITION OF 1 NOV 88 18 ODSOLETE
$/N 0102-014- 8601 !

UNCLASSIFIED

SECURITY CLASSIPICATION OF THIS PAGE (o

Al -_s-nu" ‘w:n-"

»

)

o

T e

e @
P
RO

I

o

LR SIS

e

i e o K

//'

el

oy oo Gl R g Tl e R P e B el g e L et e B e -y PP

:i;SE«ZQ continued 1//}1._

calling conventions” exist to insulate the caller of a function from the
syntactic details of how that function was defined, but until now no such
conventions have existed to hide consumers of program systems from the
details of how those systems were specified.

We propose a low-level data abstraction which can support notations such
as those used by MAKE and DEFSYSTEM without requiring that the introduction
of a new notation be accompanied by a completely different set of tools

for instantiating or otherwise manipulating the resulting system. ‘Eii“‘-

Lisp is used for presentation, but the issues are not idiosyncratic to
Lisp.

Accession For

NTIS GRA%I
DTIC TAB

Unannounced
Justificatio

By.
Distribution/

Avallability Qodes
Avail and/or
Dist Special

A-l

o A

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.l. Memo No. 801 A Scptember, 1984

The Description of Large Systems
Kent Pitman

Abstract

In this paper, we discuss the problems associated with the description and manipulation of large
systems when their sources arc not maintaincd as single files. We show why and how tools that
address these issucs, such as Unix MAKE and Lisp Machine DEFSYSTEM, have evolved.

Existing formalisms suffer from the problem that their syntax is not easily scparable from their
functionality. In programming languages, standard *“calling conventions™ exist to insulatc the caller
of a function from the syntactic dctails of how that function was defined, but until now no such
conventions have existed to hide consumers of program systems from the details of how those
systems were specificd.

We proposc a low-level data abstraction which can support notations such as thuse used by MAKE
and DEFSYSTEM without requiring that the introduction of a new notation be accompanied by a
completely different sct of tools tor instantiating or otherwise manipulating the resulting system.

Lisp is used for prescntation, but the issucs are not idiosyncratic to Lisp.

Keywords: Compilation, large Systems, Lisp, System Maintenance.

‘This report describes rescarch done at the Artificial Intelligence Laboratory of the Massachusclts Institute
of Technology. Support for the laboratory's artificial intelligence rescarch has been provided in part by the
Advanced Rescarch Projects Agency of the Department of Delense under Office of Navad Rescarch contract
NOOOT4-80-C-0505. in part by National Science Foundation grants MCS-7912179 and MCS-8117633, and in
part by the IBM Corporation,

The views and conclusions contained in this document arc those of the anthors, and should not be intespreted
as representing the policies. expressed or implied, of the Department of Defense, of the National Scicnce
Foundation, or of the 1BM Corporation,

® Missichusetts Institate of Technology, 1954

T e R e

l. Introduction

For reasons of modularity and cditing convenicnce, the source code for large program systems is
rarcly maintained as a single file. Instead, it is typically broken into a number of smaller files
which together make up the system,

Since system tools such as cditors, compilers, loaders and printers tend to be designed to deal with
files rather than systems, some extra mechanism is gencrally required in order to allow their users
to deal with systems that span multiple files. In the next scction, we trace the cvolution of tools
for system building, identifying the important issucs that carly tools sought to address.

We then present an overview of two system specification languages, Unix' MAKE and Lisp Machine
DEFSYSTEM, which itlustrate the level of technology currently available to programmers for dealing
with these issues. Most criticisms which can be made about cxisting tools are at the syntactic level,
The tools address the right issues, but their syntax can be a stumbling block, inhibiting the
cxpression of certain kinds of rclations and the ability to make extensions to the tools’ original
functionality. It is not possible to vary the syntax without rewriting most or all of the underlying
support.

We conclude by proposing an organizational strategy which decouples syntax and functionality.
This makes it possible for a programmer to develop alternate system maintenance tools without
having to reimplement every aspect of the original tools.

'To make the discussion more concrete, we will give several examples of specification languages
that could be built under the proposed framework. However, it is important to understand that
the purpose of this paper is not to argue in favor of any particular notation. Rather, we wish
to illustrate that our proposcd organizational stratcgy cstablishes an appropriate framework for
developing alternate notations such as these. As an appendix, we offer a sample implementation of
these specification languages in Lisp Machine Lisp in order to further clarify any issues left
vaguc by the examples used in the body of the paper.

II. Background

There are a number of standard maintenance operations performed on systems. ‘These operations
include (but are not limited to) the creation of hardcopy listings, copying or renaming the files which
make up the source of the system, loading uncompiled source files (e.g.. into a lisp interpreter),
and compiling changed source files,

For a system maintained as a single monolithic file, it is rcasonably obvious how most of these
maintenance operations can be performed. Getting hardcopy of the system source is as simple as
getting hardcopy of any other file; compiling the system is as simple as compiling any single filc.
FFor a more complex system, where the source spans more than onc file, performing these operations
may be considerably more complicated. In that case, to get a listing, onc must ask that cach of
the source files be printed. To compile the system, one must ask that cach of the source files be
compiled and. in somne cases, that the compilation occur in a certain order. 1o load the system
may be similarly complex due lo another (not neecssarily identical) set of ordering constraints.

A Need for Abstraction

It used to be that breaking a system into multiple files meant that one had to remember all the
names of the files and manipulate cach as a separate object. Programming environments had some
primitive understanding of files and operations to be performed upon files, but had no explicit
understanding that groups of files could work together as a single unit.

'I-Jnii ﬁ :i tedemark of Bell 1 abs,

It was common practice then (and still is today) o create batch files holding the commands
necessary o accomplish a particular manipulation. For example. the programmer might have kept
a file containing code for compiling and loading a particular systein and another file containing
code for hardeopying its sources:

11 Batch sequence to compile/load system.
(LOAD (COMPILE-FILE "MACROS.LISP"))

(LOAD (COMPILE-FILE "UTILITY.LISP"))
(LOAD (COMPILE-FILE "MAIN.LISP"))

COMPILE-AND-L.OAD-MYSYS.LISP

;+ Batch sequence to hardcopy system sources.
(HARDCOPY-FILE "MACROS.LISP")

(HARDCOPY-FILE "UTILITY.LISP*)

(HARDCOPY-FILE "MAIN.LISP"),

HARDCOPY-MYSYS.LISP

Common though it may have been to manipulate systems indirectly through such batch files, it was
quite clumsy. It mcant that any time a change to the system was made, all the relevant batch files
had to be updated. If not updated carefully and completely, the batch files could casily become
inconsistent, leading to confusing cifects. Also, because information about the structure of a system
was procedurally embedded, the only way a utility could be written to apply a ncw operation to the
system was by creating yet another separatcly-maintained batch file.

Not surprisingly, programmers have moved away from this batch method of maintaining thelr
systems and toward the notion that a systemi should be defined abstractly in some central place
and then manipulated as a unit rather than as a sct of unrclated individual components (fites).

A First Approximation .
Here is a simple cxample of the sort of code nceded to implement the kind of tool we are
discussing;

(DEFVAR *SOURCE-INFO* (MAKE-PLIST))

(DEFUN SYSTEM-SOQURCES (SYSTEM) (GET *SQURCE-INFO* SYSTEM))

(DEFUN DEFINE~SYSTEM-SOURCES (SYSTEM &REST SOURCES)
(PUTPROP *SOURCE-INFO* (COPYLIST SOURCES) SYSTEM))

(NEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #°'HARDCOPY-FILE (SYSTEM-SOURCES SYSTEM)))

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(MAPC #'(LAMBDA (FTLE) (LOAD (COMPILE-FILE FILE)))
(SYSTEM-SOURCES SYSTEM)))

Given this level of support, a sysiem would be “dcfined™ by writing sitnply:

(DEFINE-SYSTEM-SOURCES 'MYSYS
"MACROS.LISP" "UTTLITIES.LISP" “"MAIN.LISP"),

Once delined, such a system could be manipulated by requests such as these:

(NARDCOPY-SYS5itM 'MYSYS)
(CONPILE-AND-LOAD -SYSTEM 'MYSYS)

&

B

3 -
L

R IO R R I R R R R R O N W W N A N DR W RO O SR AR R R S RS

Partial Ordering of Dependencies

One problem with this formulation is that the relationship between the modules of a system may
be quite complex. For example, some of the files in a system may not depend on other files and
the whole system may not need to be recompiled just because one file has changed. To ity o
account for this, the definition of COMPILE-AND-LOAD-SYSTEM might be changed to read:

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(LET ((COMPILE-FLAG NIL))
(DOLIST (FILE (SYSTEM-SOURCES SYSTEM))
(SETQ COMPILE-FLAG
(OR COMPILE-FLAG (NEEDS-COMPILATION? FILE)))
(IF COMPILE-FLAG (COMPILE-FILE FILE))
(LOAD (BIN-FILE FILE))))).

With this revised definition, files in a system’s source file list would have a left-to-right dependency
relation. Consider again the system defined by:

(DEFINE-SYSTEM-SOURCES 'MYSYS
*MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP").

[f MACROS.LISP is changed, UTILITIES.LISP and MAIN.LISP will have to be recompiled.
But if MAIN.LISP is changed, it is the only file which will get recompiled.

Simple left-to-right dependency is uscful for some applications, but may cause a lot of unnceded
work in others. 'The rcason is that the actual ordering may only be partial, but a full ordering is
forced by this notation.?

For example, it is casy to imaginc our system being constructed so that if the file MACROS . LISP
changed, both UTILITIES.LISP and MAIN. LISP would need to be recompiled, but if just one
of UTILITIES.LISP or MAIN.LISP changed, only tha; onc file would require recompilation.

Because this simple notation provides no way to adeguately express such complex relations, it must
be judged inadequate to handle the “gencral case.” Nevertheless, there arc cases where it would
be adequate, and it would be nice to use it (or somcething cqually simple) for those cases,

Orthogonal Dependency Types

Another problem with our original formulation concerns multiple, independent dependency chains.
Dependency information for compilation might not be the same as dependency information for
producing a runtime cnvironment,

If the only goal is to compile a system, there might be many files which do not need to be
loaded because they contain utilities used only at runtime. Alternatively, if the goal is to load an
alrcady-compiled system, some files (for example. those containing only macros used at compile
time) might not he nceessary. I both compilation and loading arc to be interleaved, a th'rd
ordering might arisc.

An adequate notation for describing systems needs to offer a notation for stating different kinds
of dependency relations, and should probably be extensible (allowing the addition of new kinds of
dependencics).

*In general, notations must be chosen with extreme care; an ill-chosen notation can have a very adverse
cffect on specification: that use it, making them seem to imply things which are in fact false. For a awore
complete discusion of such issues, see [Mackinlay 84).

» » TR 3 2. - 3
iy A Sy WLIW, o™ WALV SO LWL AN 0 ot LT A A |

<ln>\"

ill. Exisling Tools

The Unix MAKE Fucility

The Unix MAKE facility [I°cldman 78] is frequently pointed to as a modcl of “the right way to
definc a system.™ 1t is syntactically simplc and provides a reasonable amount of power.

A makefile contains Unix shcll commands augmented with information about which code
modules depend on which others. When the make command is invoked, it is as if all the
shell commands were cxecuted except that some shell commands may be “optimized out™ if the
dependency information specifies that they are not necessary o preserve correctness.

To make things concrete, here is a sample of how a system might be specified in a makef ile:

mysys: a.o b.o
¢cc a.o b.o -Im -0 pgm
a.o: incl a.c

cc -Cc a.c
b.o: incl b.c
cc -¢c b.c

The first linc defines that there is some module called mysys which nceds to be updated if a.0
or b. o arc cver out of date. The indented line following that line specifics how to do the update;
specifically, it links the compiled files a. 0, b. o, and standard library m. The third and fifth lines
define modules a.0 and b. o, saying that they depend on . ¢ source files and also on some file
called incl (which they presumably reference internally via #include).

To make comparison easicr, we could pretend that MAKE uscd | isp expressions rather than requiring
a special parser. In such case, a makef i1e might contain an cxpression like:

(DEFINE-FOR-MAKE MYSYS
(MYSYS ("a.o” "b.o")
(LOAD-IF-NOT-LOADED "s")
(LOAD-IF-NOT-LOADED "b")
(LOAD-IF-NOT-LOADED "m"))
("a.o" ("incl” "a.c")
(COMPILE-FILE "a.c"))
{("b.o" {"inc1" "b.c")
(COMPILE-FILE "b.c")))
Onc problem with MAKE is that not all the information in a makef ile is explicit. For cxample,
the fact that the system sources are incl, a.c, b. ¢ is nowhere explicit. ‘There is nothing (other
than hoping that .o files are not source files and anything clse is) which identifics them as the
source files. A programmer wanting to write a utility for producing hardcopy of a system's sources
would not be able to drive the utility off of the information contained in the makefile.

MAKE offers no theory of how to include or process additional information. IFor cxample, having
the tail of cach module clause (the part after the colon in the original Unix syntax) say how to
build the module is fine for a compiled-only language, but is not reasonable in a linguage like
lisp which embraces the notion of an interpreter and a compiter that can share the load. ‘There is
no obvious way to cxtend MAKE in an upward-compatible fashion in order to allow specification
of conunands for compiling modules as well as commands for loading them. ‘There is also no
provision for adding other kinds of information, such as an alternate notion of what it means for
madules to be owt of date or how to handle circular dependencics,

In fact, MAKE amounts to little more than a batch Facility with a simple but inflexible provision
for ignoring unnecessary commands. Just a5 with normal bateh files, o do two operations (e.g..
compile and load) requires two batch files. While it might be syntactically convenient for some
common applications in compiled-only kinguages under Unix, MAKE does not represent a theory
ol how o maintain systeins,

v’y

AT YL T s W AWy

I R N N R A A R N I RN

‘The DEFSYSTEN Facility

The Lisp Machine DEFSYSTEM facility [Wcinreb 81) bills itsclf as a “general and extensible™ tool
for maintaining systems broken into several files. [t provides a means of noting what files belong
to what modules, what modules depend on what other modules (both for compilation and for
loading). and is cxtensible to allow the addition of new system-building “transformations™ (such as
calls to alternate compilers and loaders).

Information about the structure of a system is defined with the DEFSYSTEM special form. Later,
MAKE-SYSTEM can be called to perform a pre-defined sct of operations upon the system.

Here is a sample system description written in DEFSYSTEM notation:

(DEFSYSTEM MYSYS

(:MODULE MACROS ("inc1"))

(:MODULE A ("a"))

(:MODULE B ("b"))

(:MODULE MLIB ("m"))

(:FASLOAD MLIB)

(:COMPILE-LOAD MACROS)

(:COMPILE-LOAD-INIT A (MACROS)
(: FASLOAD MACROS)
(:FASLOAD MLIB))

(:COMPILE-LOAD-INIT B (MACROS)
(: FASLOAD MACROS)
(:FASLOAD MLI8 A)))

The :MODULE? clauses specify which files belong to cach of the modules. For example, the INCL
module refers to the file "inc1.11isp", the A module refers to "a.1isp", efc.

The :FASLOAD clausc for MLIB says that "m.1isp" is a standard library which must be loaded.
This definition doesn't specify when it might be recompiled; presumably that is handled by some
other agency.

The :COMPILE-LOAD clause for MACROS says that "inc1.11sp" is part of the system and must
be recompiled if changed, but it has no particular preconditions to be satisfied prior to compilation
or loading.

The :COMPILE-LOAD-INIT clauses for A and B specify various kinds of dependency information.
Both must be recompiled not only if they themselves change, but also if MACROS changes. Before
compiling A, onc must first load MACROS; before loading A, one must first load MLIB. Before
compiling B, onc must first load MACROS; beforc loading B, onc must first load MLIB and A.

Although namecs like :COMPILE-LOAD may look like function names, they are not. They
simply declare that compilation and/or loading may nced to occur under certain circumstances.
DEFSYSTEM notation, unlike that of MAKE, is declarative rather than procedural. Because of
this, MAKE-SYSTEM can perform more than one kind of operation (for cach DEFSYSTEM form),
where MAKE could only perform onc (for cach makef i1e). For example, given certain arguments,
MAKE - SYSTEM will compile a system. Given different arguments, it will simply load an alrcady-
compiled version of the system. ‘

On the other hand, the set of operations that MAKE-SYSTEM will perform is pre-defined and not
extensible. ‘This means that if somcone wanted to add a new utility (e.g. for hardcopying sources)
there would be no way to do it because there is no user-advertised mechanism for asking for a
list of a system's source files. ‘The information is present and is used internally by various system
utilitics, but is not advertised to users as part of the standard abstraction.

3In Lisp Machine Lisp. symbols preceded by a colon are “keywords™ interned in a canonical “keyword
package.” By special decree, keywords are sell-quoting (£e.. bound to themselves). Hence, * :F00 and :F0O
eviluate to the same thing, : F0O0.

» MSCGSGAA M YO WO SOOI RO U PEYLC N i ' A" AN ;'l,p'l“ "_’\ w- :

Anuther gripe commonly heard about DEFSYSTEM is that it was designed to handic hard cascs,
but that for simpler tasks it is gencrally cumbersome and unplcasant to use.

Still another problem, which contributes to the overall fecling of clumsiness, is that there is no
transitivity of dependency information between DEFSYSTEM modules. Hence, if DEFSYSTEM is
told that C.LISP depends on B.LISP and that B. LISP depends on A.LISP, DEFSYSTEM will
not infer that C.LISP depends on A.LISP. ‘lechnically, it would be incorrect to do otherwise
because it may be the case that the part of B.LISP which depends on A.LISP is not used by
C.LISP. However, the result of this decision on the part of the DEFSYSTEM designers is that
large DEFSYSTEM forms tend to take on a pyramidal shape as later compile-load specifications are
forced to specify an enormous number of dependencics explicitly:

(defsystem KBE
(:name "Knowledge-Based-Editor")
(:short-name "KBE")

:module LET "KBE: LISPM2; LET" :package KBE)

:module LETS "KBE: LMLIB; LETS")

:module PP "KBE: LMLIB; GPRINT")

:module BASE ("BASIC* "NOISE" "SETS" "CONDITIONS™ "ENGLISH"
"SYSTEM-MAGIC™ "FLAVOR-NAGIC"))

:module MACRO ("MACRO"))

:module KVARS “KVARS")

-~ o~~~ g~
.

:fasload PP)
:fasload LET)
:fasload LETS)
:compile-load-fnit BASE (PP)
(:fasload PP LET LETS) O
(:Tasload PP)) .
(:compile-load-init MACRO (PP)
(:fasload PP LET LETS BASE)
(:fasload BASE))
(:compile-load-init KVARS (PP MACRO)
(:fastoad PP LET LETS BASE MACRO)
(:fasload BASE))
(:compile-load-init KMAC (PP MACRO)
(:fasload PP LET LETS BASE MACRO KVARS)
(:fasload BASE KVARS))
(:compile-load-init IMAC (PP MACRO KMAC)
{:fasload PP LET LETS BASE MACRO KVARS KMAC)
(:fasload BASt KVARS KMAC))
(:compile-load-init MBOX (PP MACRO)
(:fasload PP LET LETS BASE MACRO KVARS IMAC)
(:fasload BASE KVARS IMAC))
(:compile-load-init BEHAVE (PP MACRO 1MAC)
(:fasload PP LET LEFS BASE MACRO KVARS IMAC)
(:fasload BASE KVARS IMAC MBOX))
(:compile-load-init KUTIL (PP MACRO IMAC BCUAVE)
(:fastoad PP LET LETS BASC MACRO KVARS IMAC BEHWAVE)
(:fasload BASE KVARS IMAC MBOX BEMNAVE))

o~ g~ o~

(:compile-load-init MAGIC (PP MACRO IMAC BEWAVE SIMPLE LD1 SOCIETY)
(:fastoad PP 1LT LLIS BASI MACRO KVARS 1MAC
BIMAVL KUTIL SIMPLT ED) SOCIEIY STNDRD ZMAGIC)
(:fasload BASE KVARS TMAC BIHAVE KUTIL ED1
SOCIETY SINDRD BRIDGE ZMAGIC))

o)

"Vhiw example is aken directly from a real progiun system developed by the MIT Programmer’s Apprentice @
sroup. The Tl definition is much longer, describing the relations between about Y0 files, grouping them into
about SO logical modules.

-!v I " & . . . o .
i @ DEFSYS1EM is cxtensible, but in addition to its other problems, much of the data available to
extension writers is in the form of special variables which are available while its “transformations™

are happening. To illustrate this, we include an excerpt from the Lisp Machine Manual scction

S dcscnbmg state variables which can be uscd in writing DEFSYSTEM cxtensions:

ggﬂ S1 .'SYSTEM BEING-MADE®* Variable

l,.' ‘The internal data structure which represents the system being made.

W

ST:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-BEFORE® Variable
A list of forms which are cvaluated before the transformations are performed.

SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-AFTER* Variable
A list of forms which arc cvaluated after the transformations arc performed.

ST:*MAKE-SYSTEM-FORMS-TO-BE~-EVALED-FINALLY* Variable
A list of forms which arc cvaluted after the body of MAKE-SYSTEM has completed. This differs

3 from SI:*MAKE-SYSTEM-FORMS-TO-BE-EVALED-AFTER® in that these forms are evaluated

é} : outside the “compiler context,” which sometimes makes a difference.

B

Sk SI:*QUERY-TYPE* Variable

(M Controls how questions are asked. Its normal valuc is : NORMAL. : NOCONF IRM means no qucstions

¥ will be asked and : SELECTIVE asks a question for cach individual file.

‘ : .

:, (ST:DEFINE-MAKE-SYSTEM-SPECIAL-VARIABLE var val [defvar-p]) Special Form

fyer Causcs var to be bound to val, which is evaluated at MAKE -SYSTEM time, during the.body of the
@ call to MAKE~SYSTEM. 'This allows you to define new variables similar to those listed above. (€

'ﬂ'.x defvar-p is specificd as (or defaulted to) T, var is defined with DEFVAR. It is not given an initial

R value. If defvar-p is specificd as NIL, var belongs to some other program and is not DEFVAR'ed

o here.

2 Because information is procedurally embedded in this way, it may not be cxplicit at arbitrary times.

ot Also, it imposes a lot of pre-defined mechanism for talking about systems which might not be

convenient or even relevant in certain situations.

g e - T
k. Ihese problems with DEFSYSTEM's design make it difficult to develop tools which interface to
o those provided with DEFSYSTEM. The net result is that the DEFSYSTEM formalism is far less
> flexible than we might want it to be.
S IV. Proposal
O\
gy o e .
Y/ Both DEFSYSTEM and MAKE offer interesting functionality, but that functionality is tightly bonded
n". to the accompanying syntax. Neither sceks to provide a theory of how to allow specification of a
6.) system without binding the user to a particular syntax,
)
3 No matter what the nature of the specification language, the kinds of high level operations to

be performed upon systems is not going to vary. We will still want to edit, compile, load, and
hardcopy systems. Hence, rather than propose yet another system description language with a new,
improved notation, we will propose a frimework in which syntax and functionality arc permitted
to vary independently.

In this section, we review the details of the proposal, but its esseiice is the suggestion that associated
with cvery system there should be somie object which responds appropriately to a pre-defined set
@ of operations which support appropriate maintenance of the systenn, Put another way, we assert
' thiat a key problem in previous sysiem maintenance utilities is that they either were not object
oriented or did not use their ohject oriented nature w their best advantage.

rrad O

~

- -
P
. %S

» & §

|y ¢

?
B

-«
Any sort of generic operations facility (e.g.. that provided in T [Rees 84] or Act-11 [Theriault ‘EL':
83)) would suffice o implement this proposal. Wherever possible, we will use an abstrict function- '
calling syntax for presentation. In places which call for cxamples from a particular language, we
will usc Lisp Machine Lisp for presentation purposcs.

Basic Protocol

By studying opcrations that are typically performed upon files, we can make a list of the
common operations we might expect to be performed upon sysiems. One obvious choice is
the update opcration, which includes compilation or translation from onc language to another,
parser gencration, efe. Another is instantiation, which includes the loading of files or the execution
of some kinds of sctup code. Other uscful operations might be cditing, hardcopying, and archiving.

To support these opcrations, we define the following functions:

(SYSTEM:GENERATE-PLAN system operation) — actions
Given the name of an abstract operation (such as :UPDATE, : INSTANTIATE, or :HARDCOPY),
returns a list of actions (abstract plan steps) which will accomplish the uperation.

(SYSTEM:EXECUTE-PLAN system actions)
Exccutes a list of actions (or plan steps), such as those returncd from a SYSTEM: GENERATE -PLAN
request.

(SYSTEM:EXPLAIN-PLAN system actions)
Types out an explanation of what would be the effect of exccuting actions.

(SYSTEM:SOURCE-FILES system) — files G
Rcturns a list of the source files for the system.

To this busic set, we will add the following two functions. It might be argucd that they are
superfluous in the presence of the above functions, but in practice having them will greatly
enhance the clarity of some codc. By adding them to the standard protocol, we encourage a clearer
programming style and standardizc on tenms;
(SYSTEM:EXECUTE-ACTION system action)

Exccutes a given action (plan step).

(SYSTEM:EXPLAIN-ACTION system action)
Types out an cxplanation of what would be the effect of exccuting action.

FFor convenience, we'll also define that if the argument given to EXPLAIN or EXECUTE is the name
of an opcration rather than a set of steps, then the plan will be generated automatically. This
allows us to say:

(SYSTEM:EXECUTE-PLAN system :UPDATE)
and (SYSTEM:EXPLAIN-PLAN system :UPDATE)

where formerly we would have had to say:

(SYSTEM:EXPLAIN-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATE))
and (SYSTEM:EXECUTE-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATE)).

Defining systems

Under our proposal. systems are described using the OEFINE-SYSTEM special form. It creates a
system ohject and stores it globally for use at a later time. It has the syntax:

(DEFINE-SYSTEM name type . options).

‘/‘/:]

»- - - -

B A DA TR AR TR MO N v 30T POV, % e NS A/ W M - AR ,a 'bQ\ A 4".!' J“:! Q“-l XY} .

24

o N

e

o
b 5 A
i alak

. 3

A -

[AN

f
ot TP
-t iy

H

. s

I I IR AR A X 'ﬂ",:“ ::_,..‘_ e g :iw'-ﬂ»'.“ =|‘.£~ b L: 2 o .'f..‘. , _ ‘-»l, Pt !

‘The exact nature of the oprions will vary depending on the fype of the system. For some systems,
it may just be a list of files. lor others, it might be a more complex data structure specifying
specific dependency information. ‘This proposal is designed explicitly to avoid taking a stand on
what goes in this portion of the system specification.

To support this kind of typc spccific option processing, we need functions to digest a type-specific
options list:

{SYSTEM:PROCESS-OPTIONS system options-Tist)
Processes an options-list. such as the body of a DEFINE-SYSTEM form. 'This might, but nced not
necessarily, be done by mapping SYSTEM: PROCESS-OPTION down the options-list.

(SYSTEM: PROCESS-OPTION system name . data)
Processes a single option with given name and dara. The option name :NAME must be handled.
Handling of any other option is at the discretion of the particular system type.

Creating System Objects

The DEFINE-SYSTEM spccial form is supported by a normal function, called CREATE-SYSTEM,
which has the syntax:

(CREATE-SYSTEM name type options).
CREATE-SYSTEM rcturns an object representing the system, but does not store it in any global place.
Such an object is called an anonymous system. CREATE-SYSTEM (and hence DEFINE-SYSTEM)

works by creating an object of the designated system flavor and then calling appropriate functions
to sct its name and process its options.

Extensibility .
To be appropriately cxtensible, each implementation would have to dcfine how these functions

related to the gencric operations facility provided by that language. For cxample, on the Lisp
Machine, the interface to flavors might look like:

(DEFUN SYSTEM:PROCESS-OPTIONS (SYSTEM OPTIONS-ALIST)
(SEND SYSTEM :PROCESS-OPTIONS OPTIONS-ALIST))

(DEFUN SYSTEM:PROCESS-OPTION (SYSTEM NAME &REST DATA)
(LEXPR-SEND SYSTEM :PROCESS-OPTION NAME DATA))

Exploiting Inheritance

Languages which provide generic operations and facilities for type inheritance would probably offer
at least two pre-defined types.

A type called SYSTEM should be at the basc. It should have no propertics other than identifying
the object as a system, Designers who wish to start over “from scratch™ in desighing new types
of systems adhering (o the protocol we propose would start with the SYSTEM type and work from
there,

Another type, which we shall call VANILLA-SYSTEM, might offer some very general functionality
which might be of use to many kinds of systems. Using whatever inheritance mechanism was
appropriate to the language. implenentors of many new system types might be able to inherit from
this slightly less gencral type rather than starting from scratch and building their system type from
type SYSTEM. Naturally, VANILLA-SYSTEM would inherit from SYSTEM.

In the Lisp Machine, for example, customizing can frequentty be done by mixing VANILLA-SYSTEM
into the new Havor and adding or changing a few methods. Nothing prevents the designer from
starting from scratch and implementing all the methods (rom scrateh: but this will typically involve
mare work than is necessary.

~
ROOOEOROR AR NS

Sy ot

P
g -

T

Y8 el

K S
Rt

1

I

o e e
oot Il i

o 3 ad i P ar
ATV R N %l

Al

S | e

A K

-

. ur‘:"’x‘:ﬁ‘{ . e

ey Y o om B3 o Rt - PR .. o %, - [. B - CE T
TN, & AT CONLR I R B S % AR D P VI L O N ST I SR WL ATE AN 1o S DTS S PR RN Y. ERNTRA R 3 m

A typical system flavor might look like: i \?J

(DEFFLAVOR system-type (...instance variables...)
(VANILLA-SYSTEM))

followed by definitions of new or customized methods.

For example, on the Lisp Machine, the :PROCESS-OPTIONS mcthod might be expected to be
dcfined by:

(DEFMETHOD (VANILLA-SYSTEM :PROCESS-OPTIONS) (OPTIONS)
(DOLIST (OPTION OPTIONS)
(SEND SELF :PROCESS-OPTION OPTION)))

This is defined as part of VANILLA-SYSTEM to save everyone the trouble of writing that same
method. In fact, VANILLA-SYSTEM might cven define : PROCESS-0PTION to usc : CASE method
dispatch (so that handling cach kind of option may be defined by a scparatc DEFMETHOD form).
If so, we might cxpect to also find definitions such as these in VANILLA-FLAVOR:

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :FULL-NAME) (NAME)
(SETQ FULL-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :SHORT-NAME) (NAME)
(SETQ SHORT-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :NAME) (NAME)
(IF (NOT SHORT-NAME) (SETQ SHORT-NAME (STRING NAME)))
(IF (NOT FULL-NAME) (SETQ FULL-NAME (STRING NAME))))

/

(DEFMETHOD (VANILLA-SYSTEM :OTHERWISE :PROCESS-OPTION) (NAME &REST DATA) <::>
(FERROR "Bad option: ~S~%Data: ~S" NAME (COPYLIST DATA)))

Presumably, systems inheriting from VANTLLA-SYSTEM would define additional : PROCESS-OPTION
mcthods for any specifications appropriate to them.

Modular Extensions

Given these basic facilitics, it is casy to make modular cxtensions. The function HARDCOPY-SYSTEM
discussed carlier could be written simply as:

(DEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #'HARDCOPY-FILE (SYSTEM:SOURCE-FILES SYSTEM)))

Likewise, a facility for saving a snapshot of a system’s source files to another dircctory might be
writien:
(DEFUN ARCHIVE-SYSTEM (SYSTEM ARCHIVE-DIRECTORY)
(DOLIST (FILE (SYSTEM:SOURCE-FILES SYSTEM))
(COPY-FILE FILE ARCHIVE-DIRECTORY)))

There's no reason the user should necessarily have to write things like this himsell. In general, it's
nice o have system fibraries that have this sort of thing pre-defined. ‘The important thing is that
if they were not primitively provided, they would be no problem to write as extensions because a
basic sct of operations has been chosen which lends itsclf to modular extension.

Even the fancier options to DEFSYSTEM, such as the : SELECTIVE option, fall directly out of this
modularization. For example, the essence of the : SELECTIVE option is captured by:

(LLT ((PLAN (SYSTEM:GENERATE-PLAN system :UPDATE)))
(FORMAT T "~&To update ~A:" system)
(DOLTISYT (STFP PLAN) :
(SYSTEM:EXPLATIN-ACTION system STEP)) Q§§§
(UNLESS (HOT (Y-OR-N-P "Ready to go ahead? ")) e
(SYSTEM:EXLCUTE-PLAN system PLAN)))

10

y .A .’. ‘\.' _l yIaly ‘ £, (] .-‘ 0' vy ‘1 >

SN YA TN T Y R TR UL Vi u W L W W R IR T RN T N N Y S VRSSO AN

Variations are also simple. For cxample, per-step querying could be achicved by:

(DOLIST (STEP (SYSTEM:GENERATE-PLAN system :UPDATE))
(SYSTEM:EXPLAIN-ACTION system STEP)
(UNLESS (NOT (Y-OR-N-P "OK? "))
(SYSTEM:EXECUTE-ACTION system STEP)))

Systems with Simple Dependencies

Until now, not much has been said about what kind of information should go into the options
portion of a DEFINE-SYSTEM form.

In the simplest case, all we might want to specify is the sct of files involved. So, for example, we
might imaginc a kind of system called SIMPLE-SYSTEM in which thc options scction was just a
list of files, so that the system we carlicr specified by:

(DEFINE-SYSTEM-SOURCES °'MYSYS
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP")

would now be spccified by:

(DEFINE-SYSTEM MYSYS SIMPLE-SYSTEM
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP").

Contrast the simplicity of this approach with the MAKE specification of:

(DEFINE-FOR-MAKE MYSYS
("main.bin" ("utilities.bin” "macros.bin" "main.lisp")
(LOAD-IF-NOT~LOADED "macros.bin")
(LOAD-IF-NOT-LOADED "utilities.bin™)
(LOAD (COMPILE-FILE "main.lisp")))
("utilities.bin" ("macros.bin" "utilities.lisp")
(LOAD-IF-NOT-LOADED "macros.bin")
, (LOAD (COMPILE-FILE "utilities.lisp")))
("macros.bin" ("macros.lisp”)
(LOAD (COMPILE-FILE "macros.lisp"))))

or the DEFSYSTEM form:

(DEFSYSTEM MYSYS
(:MODULE MACROS ("macros"))
(:MODULE UTIL ("utilities"))
(:MODULE MAIN ("main”))
(:COMPILE-LOAD MACROS)
(:COMPILE-LOAD-INIT UTIL (MACROS)
(: FASLOAD MACROS)
(: FASLOAD MACROS))
(:COMPILE-LOAD-INIT MAIN (MACROS UTIL)
(: FASLOAD MACROS UTIL)
(: FASLOAD MACROS UTIL))).

£

‘The system defined by this DEFINE-SYSTEM form is a first-class object which can be inspected -

and manipulated by the abstraction functions proposed in the last section.

2 g 4 C,

LW

Systems with Complex Dependencies

Consider now a system with a sct of macros (in MACROS . LISP) that expand into calls to functions
in some wiility package (in MACRO-SUPPORT . LISP). It should be an abstraction violation for the
consumers of the macro package to have to know what support is nccessary for the package to
run. Yet with DEFSYSTEM, the spccification must be written:

(DEFSYSTEM MYSYS
(:MODULE MACROS ("macros"))
(:MODULE MACRO-SUPPORT ("macro-support™))
(:MODULE FOO ("foo"))

(:COMPILE-LOAD MACRO-SUPPORT)
(:COMPILE-LOAD MACROS)
(:COMPILE-LOAD-INIT FOO (MACROS) ’
(: FASLOAD MACROS)
(: FASLOAD MACRO-SUPPORT))
-+)
A uscr interested in abstraction might object to having to specify FOO’s dependency upon
MACRO-SUPPORT cxplicitly. Certainly users of DEFSYSTEM have complained that this lack of
abstraction makes very large systems very hard to specify and maintain using DEFSYSTEM.

Armed with our ncw DEFINE-SYSTEM proposal, a new notation could be developed to handle
the situation. We might. for example, propose a notation where rather than say “FO0 depends on
MACRO-SUPPORT” explicitly (as happens in DEFSYSTEM), we could say “Using MACROQS causcs a
need for MACRO-SUPPORT.” Such a notation might Jook like:

(DEFINE-SYSTEM MYSYS MOOULAR-SYSTEM
(:MODULE MACRO-SUPPORT ("macro-support”))
(:MODULE MACROS ("macros")
(: CAUSES
(NEEDS
(:INSTANTIATE MACRO-SUPPORT))))
(:MODULE FOO ("foo")
(:NEEDS
(:UPDATE MACROS)))
et) ,
‘To argue for or against some particular new notation is not the. point of this paper. The teal
point is that the proposed tramework provides a means of introducing alternate notations in a way
that does not interfere with existing notations and tools. Existing tools can operate correctly upon
systems created with new notations such as this because it is the functional behavior of systems
which has been standardized. not the notation.

In [Raobbins 84]. stilt another notation (to accompany a tool called BUILD) is proposed for specifying
module dependency information. Although the data abstractions proposed in this paper were not
designed with BUILD in mind, they scem appropriate to support it anyway. Had the proposed
framework already been in elfect, it would probably have been considerably simpler for Robbins
to cxperiment with his new notation,

